3.339 \(\int \frac{\cos (c+d x) \cot (c+d x)}{\sqrt{a+a \sin (c+d x)}} \, dx\)

Optimal. Leaf size=63 \[ \frac{2 \cos (c+d x)}{d \sqrt{a \sin (c+d x)+a}}-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{a \sin (c+d x)+a}}\right )}{\sqrt{a} d} \]

[Out]

(-2*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(Sqrt[a]*d) + (2*Cos[c + d*x])/(d*Sqrt[a + a*Sin
[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.216204, antiderivative size = 63, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {2874, 2981, 2773, 206} \[ \frac{2 \cos (c+d x)}{d \sqrt{a \sin (c+d x)+a}}-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{a \sin (c+d x)+a}}\right )}{\sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*Cot[c + d*x])/Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(-2*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(Sqrt[a]*d) + (2*Cos[c + d*x])/(d*Sqrt[a + a*Sin
[c + d*x]])

Rule 2874

Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Dist[1/b^2, Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^(m + 1)*(a - b*Sin[e + f*x]), x], x] /;
 FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && (ILtQ[m, 0] ||  !IGtQ[n, 0])

Rule 2981

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*B*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(2*n + 3)*Sqr
t[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos (c+d x) \cot (c+d x)}{\sqrt{a+a \sin (c+d x)}} \, dx &=\frac{\int \csc (c+d x) (a-a \sin (c+d x)) \sqrt{a+a \sin (c+d x)} \, dx}{a^2}\\ &=\frac{2 \cos (c+d x)}{d \sqrt{a+a \sin (c+d x)}}+\frac{\int \csc (c+d x) \sqrt{a+a \sin (c+d x)} \, dx}{a}\\ &=\frac{2 \cos (c+d x)}{d \sqrt{a+a \sin (c+d x)}}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,\frac{a \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{d}\\ &=-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{\sqrt{a} d}+\frac{2 \cos (c+d x)}{d \sqrt{a+a \sin (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.130316, size = 116, normalized size = 1.84 \[ \frac{\left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right ) \left (-2 \sin \left (\frac{1}{2} (c+d x)\right )+2 \cos \left (\frac{1}{2} (c+d x)\right )-\log \left (-\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )+1\right )+\log \left (\sin \left (\frac{1}{2} (c+d x)\right )-\cos \left (\frac{1}{2} (c+d x)\right )+1\right )\right )}{d \sqrt{a (\sin (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*Cot[c + d*x])/Sqrt[a + a*Sin[c + d*x]],x]

[Out]

((2*Cos[(c + d*x)/2] - Log[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)
/2]] - 2*Sin[(c + d*x)/2])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]))/(d*Sqrt[a*(1 + Sin[c + d*x])])

________________________________________________________________________________________

Maple [A]  time = 0.836, size = 87, normalized size = 1.4 \begin{align*} 2\,{\frac{ \left ( 1+\sin \left ( dx+c \right ) \right ) \sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) }}{\cos \left ( dx+c \right ) a\sqrt{a+a\sin \left ( dx+c \right ) }d} \left ( \sqrt{a-a\sin \left ( dx+c \right ) }-\sqrt{a}{\it Artanh} \left ({\frac{\sqrt{a-a\sin \left ( dx+c \right ) }}{\sqrt{a}}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*csc(d*x+c)/(a+a*sin(d*x+c))^(1/2),x)

[Out]

2*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)/a*((a-a*sin(d*x+c))^(1/2)-a^(1/2)*arctanh((a-a*sin(d*x+c))^(1/2)/a^
(1/2)))/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{2} \csc \left (d x + c\right )}{\sqrt{a \sin \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)/(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^2*csc(d*x + c)/sqrt(a*sin(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [B]  time = 1.70545, size = 647, normalized size = 10.27 \begin{align*} \frac{\sqrt{a}{\left (\cos \left (d x + c\right ) + \sin \left (d x + c\right ) + 1\right )} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \,{\left (\cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt{a \sin \left (d x + c\right ) + a} \sqrt{a} - 9 \, a \cos \left (d x + c\right ) +{\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) + 4 \, \sqrt{a \sin \left (d x + c\right ) + a}{\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{2 \,{\left (a d \cos \left (d x + c\right ) + a d \sin \left (d x + c\right ) + a d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)/(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/2*(sqrt(a)*(cos(d*x + c) + sin(d*x + c) + 1)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2
+ (cos(d*x + c) + 3)*sin(d*x + c) - 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a) - 9*a*cos(d*x + c) +
(a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x + c) - a)/(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2
 - 1)*sin(d*x + c) - cos(d*x + c) - 1)) + 4*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) - sin(d*x + c) + 1))/(a*d*c
os(d*x + c) + a*d*sin(d*x + c) + a*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos ^{2}{\left (c + d x \right )} \csc{\left (c + d x \right )}}{\sqrt{a \left (\sin{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)/(a+a*sin(d*x+c))**(1/2),x)

[Out]

Integral(cos(c + d*x)**2*csc(c + d*x)/sqrt(a*(sin(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [B]  time = 2.37636, size = 348, normalized size = 5.52 \begin{align*} -\frac{\frac{2 \,{\left (\frac{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )} - \frac{1}{\mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}\right )}}{\sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}} + \frac{{\left (2 \, a \arctan \left (\frac{\sqrt{2} \sqrt{a} + \sqrt{a}}{\sqrt{-a}}\right ) - \sqrt{-a} \sqrt{a} \log \left (\sqrt{2} \sqrt{a} + \sqrt{a}\right ) + 2 \, \sqrt{2} \sqrt{-a} \sqrt{a}\right )} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{\sqrt{-a} a} - \frac{2 \, \arctan \left (-\frac{\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}}{\sqrt{-a}}\right )}{\sqrt{-a} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )} + \frac{\log \left ({\left | -\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt{a} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)/(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-(2*(tan(1/2*d*x + 1/2*c)/sgn(tan(1/2*d*x + 1/2*c) + 1) - 1/sgn(tan(1/2*d*x + 1/2*c) + 1))/sqrt(a*tan(1/2*d*x
+ 1/2*c)^2 + a) + (2*a*arctan((sqrt(2)*sqrt(a) + sqrt(a))/sqrt(-a)) - sqrt(-a)*sqrt(a)*log(sqrt(2)*sqrt(a) + s
qrt(a)) + 2*sqrt(2)*sqrt(-a)*sqrt(a))*sgn(tan(1/2*d*x + 1/2*c) + 1)/(sqrt(-a)*a) - 2*arctan(-(sqrt(a)*tan(1/2*
d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))/sqrt(-a))/(sqrt(-a)*sgn(tan(1/2*d*x + 1/2*c) + 1)) + log(ab
s(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(a)*sgn(tan(1/2*d*x + 1/2*c) + 1))
)/d